Hepatoprotective activity of *Murraya koenigii* leaf extract on paracetamol induced hepatic damaged rats.

Presented by:
Shyamala
M.Pharmacy 2\(^{nd}\) year
Department of pharmacology.
UCPSc, KU.
Warangal.
CONTENTS:

• Introduction
• Plant Profile
• Review of literature
• Aim and objective
• Plan of work
• Estimation of parameters.
• Results
• Discussion
• Conclusion
• References
INTRODUCTION:

- Liver is the vital organ located in the upper right quadrant of the abdomen below the diaphragm.

- The liver has a wide range of functions, including detoxification of various metabolites, protein synthesis, and the production of biochemical necessary for digestion.
Several mechanisms are responsible for either inducing hepatic injury or worsening the damage process.

Many chemicals damage mitochondria, an intracellular organelle that produce energy. Its dysfunction releases excessive amount of oxidants that in turn injure hepatic cells.

Activation of some enzymes in the cytochrome P-450 system such as CYP2E1 also lead to oxidative stress.

Paracetamol is often considered as safe pain killer drug, even though overdoses this drug lead to acute liver failure.
Inflammation

Toxic Damage
- Alcohol
- Drugs
- Poisons/Chemicals

Immunologic Damage

Infections
- Viruses
- Bacteria
- Fung
- Protozoa
The mode of action of paracetamol on the liver is by covalent binding of its toxic metabolite, n-acetyl-p-benzoquinone-amine to the sulphydryl group of protein resulting in cell necrosis and lipid peroxidation as a result of liver injury the transport function of hepatocytes gets disturbed resulting in the leakage of plasma membrane thus causing an increase in serum enzyme levels. (19,35,43)
PLANT PROFILE : (8,20,42)

- The curry tree (*Murraya koenigii* or *Bergera koenigii*) is a tropical to sub-tropical tree in the family Rutaceae

- **Systemic position of Murraya koenigii:**
 1. Domain – Eukaryota
 2. Kingdom – Plantae
 3. Division - Angiospermae
 4. Class – Eudicots
 5. Order – Sapindales
 6. Family – Rutaceae
 7. Genus – *Murraya*
 8. Species – *Murraya koenigii*
Names in different regional languages:

1. Telugu - Karivepaku
2. Hindi - Karipatta
3. Bengali - Kariphuli
4. Gujarathi - Goranimb
5. Kannada - Karibevu
6. Malayalam - Karivepillei
7. Sanskrit - Krishna nimba
8. Tamil - Karivempu
9. Oriya - Barsan
CHEMICAL CONSTITUENTS:

some of the primary alkaloids found in the Curry Tree leaves, stems, and seeds are as follows: Mahanimbine, girinimbine, koenimbine, isomahanine, mahanine, Indicolactone, 2-methoxy-3-methyl-carbazole.
HEALTH BENEFITS OF CURRY LEAVES:

1. Regular consumption of curry leaves strengthens hair, cures dandruff and prevents premature graying of hair.

2. Application of curry leaves paste helps in treating bruises and burns as well as rashes and insect bites.

3. Eating curry leaves keeps liver healthy, they are beneficial in liver conditions such as cirrhosis, they also protects the liver from various infections.

4. Curry leaves are useful in eye problems such as cataract. They protect the eyes, keeps the retina healthy and prevents vision loss.
5. Curry leaves are excellent source of iron and its consumption can help people who suffer from anaemia.

6. Curry leaves help lower the levels of bad cholesterol in the body. They also aid in weight loss, which removes extra pressure from the heart.

7. Health benefits of curry leaves for good digestion along with their aromatic flavour are the reasons for popularity of curry leaves usage in food.
LITERATURE REVIEW:

2. Nuratikah binti m.nordin et al. (2010). Evaluation of anti inflammatory activity of total alkaloids from *Murraya koenigii* leaves in rats

7. Sadhana sathaye etal (2012). Hepatoprotective activity of *Murraya koenigii* against ethanol induced liver toxicity model.

AIM AND OBJECTIVE:

Aim:

To evaluate the hepatoprotective activity of *Murraya koenigii* which was investigated in paracetamol induced hepatic damaged rats.

Objective:

Paracetamol in over doses causes lipid peroxidation, extracts were given to evaluate the SGOT, SGPT, etc levels.
PLAN OF WORK:

- Collection of plant material.
- Extraction
- Phyto chemical analysis
- Acute toxicity studies
- Screening method
SCREENING METHOD :\((23,24,35)\)

Wistar rats were divided into different groups of 6 each.

Group 1 – Control

Group 2 – Standard (100mg/kg.b.wt)

Group 3 – Toxic control (2g/kg.b.wt)

Group 4 – Test 1 (200mg/kg.b.wt)

Group 5 – Test 2 (400mg/kg.b.wt)
ESTIMATION OF PARAMETERS:

1. Estimation of SGOT.
2. Estimation of SGPT.
3. Estimation of total protein by BIURET method
4. Estimation of bilirubin
5. Estimation of albumin by BCG method
6. Estimation of alkaline phosphatase
7. Histopathological investigations.
TOTAL PROTEIN ESTIMATION (BIURET METHOD)

- **Principle:**

Proteins in alkaline medium bind with cupric ions present in biuret reagent to form a purple colored complex. The intensity of colour formed is directly proportional to the amount proteins present in the sample. (555nm)

Proteins +Cu^{2+} → purple colored complex

ALBUMIN ESTIMATION (BCG METHOD)

- Principle:

Albumin binds with bromocresol green (BCG) and produce a green colour whose absorbance is proportional to the albumin concentration. (630nm)
BILIRUBIN ESTIMATION
(Modified Jendrassik and Grofs method)

➢ Principle:

Bilirubin reacts with diazotised sulphanilic acid to form azobilirubin, a pink coloured complex whose absorbance is proportional to bilirubin concentration. Direct bilirubin, being water soluble is allowed to react with diazotised sulfanilic acid in the absence of an activator, while for the total bilirubin (direct and indirect) the diazotisation is carried out in the presence of an activator. The unconjugated bilirubin couples with the sulphanilic acid in the presence of a caffein-benzoate accelerator.(540nm)
ESTIMATIO OF SGOT (AST)
Reitman and frankels method:

- Principle:

SGOT converts L-Aspertate and α ketoglutarate to oxaloctetate and glutamate. The Oxaloacetate formed reacts with 2,4, Dinitro phenyl hydrazine to produce a hydrazone derivative which is an alkaline medium produces a brown coloured complex whose intensity is measured. (340nm)
SGOT:

\[\text{L-Aspartate} + \alpha \text{ketoglutarate} \rightarrow \text{Oxaloacetate} + \text{L-glutamate} \]

\[\text{pH 7.4} \]

alkaline

\[\text{Oxaloacetate} + 2,4,\text{DNPH} \rightarrow \text{L-malate} + \text{NAD} \]
ESTIMATION OF SGPT (ALT)
Reitman and frankel’s method

SGPT converts L-Alanine and α ketoglutarate to pyruvate and glutamate. The pyruvate formed reacts with 2,4, Dinitro phenyl hydrazone derivative, which in an alkaline medium produces a brown coloured complex whose intensity is measured. (340nm)

\[
\begin{align*}
\text{SGPT} & \quad \text{L-Alanine} + \alpha\text{-ketoglutarate} \quad \rightarrow \quad \text{pyruvate} + \text{L-glutamate} \\
& \quad \text{Ph 7.4} \\
& \quad \text{Pyruvate} + 2,4, \text{DNPH} \quad \rightarrow \quad 2,4, \text{Dinitrophenyl hydrazon} \\
& \quad \text{(black coloured complex)}
\end{align*}
\]
ESTIMATION OF ALKALINE PHOSPHATASE : (P-NPP Kinetic method)

Serum ALP hydrolyses P-NPP into yellow coloured p-nitrophenol at the alkaline pH. The rate of P-NP formation is directly proportional to the ALP activity and is measured in terms of changes in absorbance at 405nm in uv visible spectrophotometer.

\[
P\text{-NPP} + H_2O \xrightarrow{\text{ALP}} P\text{-NP} + \text{Phosphate} \]

\[
\text{Mg}^{2+} / \text{alk pH}
\]
HISTOPATHOLOGICAL INVESTIGATION:

On the 8th day the animals were sacrificed and abdomen was cut open, the liver was dissected out. Liver was rinsed in saline and preserved in 10% formalin solution. The samples were given to the pathological laboratory for further histopathological examination. Magnification of the changes of liver (X100) histopathology from control, paracetamol intoxicated and pretreatment with different test groups.
RESULTS:

Results of hepatoprotective activity were expressed as mean & sd (n=6). The significance between two groups was determined by ONE WAY ANOVA (graph pad prism software) followed by DUNNETT multiple comparision.

\[p<0.05^* \] \[p<0.01^{**} \] \[p<0.001^{***} \], compared between standard and test group
<table>
<thead>
<tr>
<th>CHEMICAL CONSTITUENTS</th>
<th>TEST</th>
<th>INFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>alkaloids</td>
<td>Dragendorffs, Mayers, Hagers</td>
<td>+</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>Molish, Fehling, Benedict</td>
<td>+</td>
</tr>
<tr>
<td>Steroids</td>
<td>Salkowski, Libermann burchard</td>
<td>+</td>
</tr>
<tr>
<td>Glycosides</td>
<td>Legal, Keller killiani, Modified borntrager</td>
<td>+</td>
</tr>
<tr>
<td>Proteins</td>
<td>Biuret, Ninhydrin</td>
<td>+</td>
</tr>
<tr>
<td>Flavanoids</td>
<td>Shinoda, Naoh</td>
<td>+</td>
</tr>
<tr>
<td>Tannims and phenols</td>
<td>5% FeCl3, lead acetate</td>
<td>+</td>
</tr>
<tr>
<td>saponins</td>
<td>Foam test</td>
<td>+</td>
</tr>
<tr>
<td>GROUPS</td>
<td>TOTAL PROTEIN (gm%)</td>
<td>ALBUMIN (gm%)</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Control</td>
<td>7.2±0.62</td>
<td>2.2±0.20</td>
</tr>
<tr>
<td>Toxic</td>
<td>5.05±0.91</td>
<td>0.36±0.21</td>
</tr>
<tr>
<td>Standard</td>
<td>6.7±0.54*</td>
<td>2.1±0.33*</td>
</tr>
<tr>
<td>Test1</td>
<td>6.0±0.65*</td>
<td>1.38±0.34*</td>
</tr>
<tr>
<td>Test2</td>
<td>6.2±0.63*</td>
<td>1.80±0.39*</td>
</tr>
</tbody>
</table>
SGOT:

One-way ANOVA data
TOTAL BILIRUBIN:

One-way ANOVA data

TB (mg/dl)

Control toxic standard test 1 test 2
treatment

** **
DIRECT BILIRUBIN:

One-way ANOVA data

[Diagram showing DB (mg/dl) levels for Control, Toxic, Standard, Test 1, and Test 2 treatments, with significance indications for each]
TOTAL PROTEIN:

One-way ANOVA data

<table>
<thead>
<tr>
<th>Treatment</th>
<th>TP (gm%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>8</td>
</tr>
<tr>
<td>Toxic</td>
<td>6</td>
</tr>
<tr>
<td>Standard</td>
<td>7</td>
</tr>
<tr>
<td>Test 1</td>
<td>6</td>
</tr>
<tr>
<td>Test 2</td>
<td>5</td>
</tr>
</tbody>
</table>

significant differences
ALBUMIN:

One-way ANOVA data
ALKALINE PHOSPHATASE:

One-way ANOVA data

AGP (IU)

Control Toxic standard test 1 test 2

300,
200,
100,
0,

0 100 200 300

** ** ** **

Treatment

Control Toxic standard test 1 test 2
SGPT:

One-way ANOVA data

![Graph showing SGPT (IU) for different treatments: Control, toxic, standard, test 1, and test 2. The graph indicates significant differences marked with asterisks (*) for test 1 and test 2 compared to the control.](image)
HISTOPATHOLOGY:

CONTROL

TOXIC

STANDARD
DISCUSSION:

From the obtained results it was evident that after 7 days of treatment with the test compound, Reduction in the levels of Serum Bilirubin, SGOT and SGPT towards the normal value is an indication of regeneration process.

The protein and albumin levels were raised suggesting the stabilization of endoplasmic reticulum leading to protein synthesis.

The protective effect exhibited by Test compounds at dose level of 200 mg/kg, 400mg/kg was comparable with the standard drug silymarin.
The histological examination of the liver sections reveals that the normal liver architecture was disturbed by hepatotoxin intoxication.

Normal control group shows normal hepatic cells, whereas administration of paracetamol in toxic control caused gross necrosis and periportal infiltration and the architecture was partly distorted.

Among these 2 compounds, Test compound 2 has more potent activity than Test compound 1 and at dose 400mg/kg and shows more liver protecting activity and liver sections shows normal architecture very nearer to the standard silymarin.
CONCLUSION:

Therefore the study scientifically supports the usage of the plant as hepatoprotective agent.

Further studies are required to:
* Find the active constituent.
* Isolate the active constituent and
* Find the mechanism of action responsible for hepatoprotective activity.
REFERENCES:

20) Deepak k.dash.evaluation of hepatoprotective and antioxidant activity of Ichnocarpus frutenscens, 6(3);755-765,2007.tropical journal of pharmaceutical research.

25) Gul T singh, Biochemical alteration of methanolic extract of *Amaranthus spinosus* on liver of Sprague dawley rats, Biology and medicine, 3(2), 2011; 365-369

37) Sadhana sathaye, hepatoprotective activity of *Murraya koenigii* against ethanol induced liver toxicity model in experimental animals, international journal of pharma and biosciences, vol 3, issue 1, 430-438, jan – mar 2012

Thanq